首页> 外文OA文献 >Wave theories of non-laminar charged particle beams: from quantum to thermal regime
【2h】

Wave theories of non-laminar charged particle beams: from quantum to thermal regime

机译:非层流带电粒子束的波动理论:从量子到量子束   热状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The standard classical description of non-laminar charge particle beams inparaxial approximation is extended to the context of two wave theories. Thefirst theory is the so-called Thermal Wave Model (TWM) that interprets theparaxial thermal spreading of the beam particles as the analog of the quantumdiffraction. The other theory, hereafter called Quantum Wave Model (QWM), thattakes into account the individual quantum nature of the single beam particle(uncertainty principle and spin) and provides the collective description of thebeam transport in the presence of the quantum paraxial diffraction. QWM can beapplied to beams that are sufficiently cold to allow the particles to manifesttheir individual quantum nature but sufficiently warm to make overlapping-lessthe single-particle wave functions. In both theories, the propagation of thebeam transport in plasmas or in vacuo is provided by fully similar set ofnonlinear and nonlocal governing equations, where in the case of TWM theCompton wavelength (fundamental emittance) is replaced by the beam thermalemittance. In both models, the beam transport in the presence of theself-fields (space charge and inductive effects) is governed by a suitablenonlinear nonlocal 2D Schroedinger equation that is used to obtain the envelopebeam equation in quantum and quantum-like regimes, respectively. An envelopeequation is derived for both TWM and QWM regimes. In TWM we recover the wellknown Sacherer equation whilst, in QWM we obtain the evolution equation of thesingle-particle spot size, i.e., single quantum ray spot in the transverseplane (Compton regime). We show that such a quantum evolution equation containsthe same information carried out by an evolution equation for the beam spotsize (description of the beam as a whole). This is done by defining the lowestQWM state reachable by a system of overlapping-less Fermions.
机译:非层状电荷粒子束近轴近似的标准经典描述扩展到两种波理论的背景。第一个理论是所谓的热波模型(TWM),它将光束粒子的近轴热扩散解释为量子衍射的类似物。另一种理论,以下称为量子波模型(QWM),它考虑了单束粒子的个体量子性质(不确定性原理和自旋),并提供了在量子傍轴衍射情况下光束传输的总体描述。 QWM可以应用于足够冷的光束,以使粒子表现出其各自的量子性质,但又足够温暖以使重叠(少重叠)单粒子波函数。在两种理论中,束传输在等离子体或真空中的传播都是由完全相似的一组非线性和非局部控制方程提供的,其中在TWM的情况下,康普顿波长(基本发射率)被束热发射所代替。在这两个模型中,在存在自身场(空间电荷和感应效应)的情况下,束传输均由合适的非线性非局部二维Schroedinger方程控制,该方程分别用于获得量子和类量子态的包络束方程。 TWM和QWM体制都得出一个包络方程。在TWM中,我们恢复了著名的Sacherer方程,而在QWM中,我们获得了单粒子光斑大小的演化方程,即,横向平面中的单个量子射线光斑(康普顿状态)。我们表明,这样的量子演化方程包含由光束斑大小的演化方程执行的相同信息(整个光束的描述)。这是通过定义无重叠费米子系统可达到的最低QWM状态来完成的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号